Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Small ; : e2310468, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38213023

RESUMEN

The production of hydrogen peroxide (H2 O2 ) via the two-electron electrochemical oxygen reduction reaction (2e- ORR) is an essential alteration in the current anthraquinone-based method. Herein, a single-atom Co─O4 electrocatalyst is embedded in a defective and porous graphene-like carbon layer (Co─O4 @PC). The Co─O4 @PC electrocatalyst shows promising potential in H2 O2 electrosynthesis via 2e- ORR, providing a high H2 O2 selectivity of 98.8% at 0.6 V and a low onset potential of 0.73 V for generating H2 O2 . In situ surface-sensitive attenuated total reflection Fourier transform infrared spectra and density functional theory calculations reveal that the electronic and geometric modification of Co─O4 induced by defective carbon sites result in decreased d-band center of Co atoms, providing the optimum adsorption energies of OOH* intermediate. The H-cell and flow cell assembled using Co─O4 @PC as the cathode present long-term stability and high efficiency for H2 O2 production. Particularly, a high H2 O2 production rate of 0.25 mol g-1 cat  h-1 at 0.6 V can be obtained by the flow cell. The in situ-generated H2 O2 can promote the degradation of rhodamine B and sterilize Staphylococcus aureus via the Fenton process. This work can pave the way for the efficient production of H2 O2 by using Co─O4 single atom electrocatalyst and unveil the electrocatalytic mechanism.

2.
Environ Technol ; 45(10): 2045-2066, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36609215

RESUMEN

We propose a feasible and economical method of constructing biomass-based multifunctional photocatalysts with excellent adsorption performance and high photodegradation abilities toward tetracycline (TC) and methyl blue (MB) under visible light. A series of novel hybrids of porous graphitic carbon embedded with Fe2O3/Fe3O4 nanocrystals (denoted as Fe2O3/Fe3O4@C) were derived from lichen doped with different dosages of Fe3+ by calcination at 700°C under a N2 atmosphere. The Fe2O3/Fe3O4@C hybrids exhibited nanoflake-like shapes, mesoporous structures, and efficient visible light harvesting, thus indicating enhanced adsorption ability and photoactivity toward pollutants. The formed Fe2O3/Fe3O4 heterojunction improved the separation efficiency and inhibited the recombination of photogenerated carriers, whereas the carbon network improved the transfer of photogenerated electrons. Under optimised conditions, the Fe2O3/Fe3O4@C-1 hybrid demonstrated enhanced photodegradation efficiencies of 96.4% for TC and 100% for MB under visible light. In addition, electron spin resonance and trapping measurements were performed to identify active species and determine the photocatalytic mechanism toward pollutants. •O2- and •OH were the active species involved, playing critical roles in the TC and MB photodegradation processes. In addition, a bacterium test revealed that the products of TC degradation by Fe2O3/Fe3O4@C-1 showed low biological toxicity. This work provides a promising preparation strategy or biomass-based photocatalysts for application in environmental pollutant treatment.


Asunto(s)
Bencenosulfonatos , Contaminantes Ambientales , Grafito , Líquenes , Nanopartículas , Carbono , Fotólisis , Antibacterianos , Tetraciclina/química , Grafito/química , Luz , Catálisis
3.
Small ; 20(11): e2306273, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37936322

RESUMEN

A novel semiconductive Co/Fe-MOF embedded with Fe2 O3 nanocrystals (Fe2 O3 @CoFe-MOF) is developed as a trifunctional electrocatalyst for the urea oxidation reaction (UOR), oxygen evolution reaction (OER), and hydrogen evolution reaction for enhancing the efficiency of the hydrogen production via the urea-assisted overall water splitting. Fe2 O3 @CoFe-TPyP-MOF comprises unsaturated metal-nitrogen coordination sites, affording enriched defects, self-tuned d-band centers, and efficient π-π interaction between different layers. Density functional theory calculation confirms that the adsorption of urea can be optimized at Fe2 O3 @CoFe-TPyP-MOF, realizing the efficient adsorption of intermediates and desorption of the final product of CO2 and N2 characterized by the in situ Fourier transform infrared spectroscopy. The two-electrode urea-assisted water splitting device-assembled with Fe2 O3 @CoFe-TPyP-MOF illustrates a low cell voltage of 1.41 V versus the reversible hydrogen electrode at the current density of 10 mA cm-2 , attaining the hydrogen production rate of 13.13 µmol min-1 in 1 m KOH with 0.33 m urea. The in situ electrochemical Raman spectra and other basic characterizations of the used electrocatalyst uncover that Fe2 O3 @CoFe-TPyP-MOF undergoes the reversible structural reconstruction after the UOR test, while it demonstrates the irreversible reconstruction after the OER measurement. This work redounds the progress of urea-assisted water spitting for hydrogen production.

4.
Mikrochim Acta ; 190(10): 421, 2023 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-37773421

RESUMEN

The two-dimensional porphyrin-based covalent organic framework (denoted by Tph-TDC-COF) was used as the sensitive layerto build an aptamer-based electrochemical sensor for the detection of Escherichia coli (E.coli). Tph-TDC-COF produced with 5,10,15,20-tetrakis(4-aminophenyl)-21H, 23H-porphine (Tph) and [2,2'-bithiophene]-2,5'-dicarbaldehyde (TDC) as building blocks exhibited a highly conjugated structure, outstanding conductivity, large specific surface area, and strong bioaffinity towards aptamers. The adoption of Tph-TDC-COF-modified electrode resulted in improved sensing performance and increased anchoring affinity toward the E.coli-targeted aptamer. Under optimal conditions, the Tph-TDC-COF-based electrochemical aptasensor demonstrated an extremely low detection limit of 0.17 CFU mL-1 for E.coli detection within a linear range of 10 to 1 × 108 CFU mL-1, accompanied by good stability, excellent reproducibility and regeneration ability, and wide practical applications. The current electrochemical aptasensing technique has the potential to be extended to detect different foodborne bacteria using specific aptamer, therefore widening the application of COFs in biosensing and food safety fields.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Porfirinas , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos , Aptámeros de Nucleótidos/química , Límite de Detección , Porfirinas/química
5.
Small ; 19(42): e2302600, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37322392

RESUMEN

An n-n type heterojunction comprising with CuN and BN dual active sites is synthesized via in situ growth of a conductive metal-organic framework (MOF) [Cu3 (HITP)2 ] (HITP = 2,3,6,7,10,11-hexaiminotriphenylene) on hexagonal boron nitride (h-BN) nanosheets (hereafter denoted as Cu3 (HITP)2 @h-BN) for the electrocatalytic nitrogen reduction reaction (eNRR). The optimized Cu3 (HITP)2 @h-BN shows the outstanding eNRR performance with the NH3 production of 146.2 µg h-1 mgcat -1 and the Faraday efficiency of 42.5% due to high porosity, abundant oxygen vacancies, and CuN/BN dual active sites. The construction of the n-n heterojunction efficiently modulates the state density of active metal sites toward the Fermi level, facilitating the charge transfer at the interface between the catalyst and reactant intermediates. Additionally, the pathway of NH3 production catalyzed by the Cu3 (HITP)2 @h-BN heterojunction is illustrated by in situ FT-IR spectroscopy and density functional theory calculation. This work presents an alternative approach to design advanced electrocatalysts based on conductive MOFs.

6.
Anal Chim Acta ; 1270: 341396, 2023 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-37311607

RESUMEN

A novel photocatalyzed Zn-air battery-driven (ZAB)-based aptasensor has been manufactured using the two dimensional (2D)/2D Schottky heterojunction as photocathode and Zn plate as photoanode. It was then employed to sensitively and selectively detect penicillin G (PG) in the complex environment. The 2D/2D Schottky heterojunction was established by the in situ growth of cadmium-doped molybdenum disulfide nanosheets (Cd-MoS2 NSs) around Ti3C2Tx NSs (denoted as Cd-MoS2@Ti3C2Tx) by using phosphomolybdic acid (PMo12) as precursor, thioacetamide as sulfur source, and Cd(NO3)2 as a doping agent through the hydrothermal method. The gained Cd-MoS2@Ti3C2Tx heterojunction possessed contact interface, hierarchical structure, and plenty of sulfur and oxygen vacancies, thus showing the enhanced separation ability of photocarriers and electron transfer. Due to the enhanced UV-vis light adsorption ability, high photoelectric conversion efficiency, and exposed catalytic active sites, the constructed photocatalyzed ZAB displayed a boosted output voltage of 1.43 V under UV-vis light irradiation. The developed ZAB-driven self-powered aptasensor demonstrated an ultralow detection limit of 0.06 fg mL-1 within a PG concentration ranged from 1.0 fg mL-1 to 0.1 ng mL-1, as deduced from the power density-current curves, along with high specificity, good stability and promising reproducibility, as well as excellent regeneration ability and wide applicability. The present work provided an alternative analysis method for the sensitive analysis of antibiotics based on the portable photocatalyzed ZAB-driven self-powered aptasensor.

7.
Food Chem ; 416: 135839, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36893636

RESUMEN

An electrochemical aptasensor was prepared for the efficient, sensitive, and selective detection of 17ß-estradiol. The sensor was based on a defective two-dimensional porphyrin-based metal-organic framework derived from V2CTx MXene. The resulting metal-organic framework nanosheets benefited from the advantages of V2CTx MXene nanosheets and porphyrin-based metal-organic framework, two-dimensional porphyrin-based metal-organic framework nanosheets demonstrated amplified electrochemical response and enhanced aptamer-immobilization ability compared with V2CTx MXene nanosheets. The sensor's detection limit was ultralow at 0.81 fg mL-1 (2.97 fM), and the 17ß-estradiol concentration range was wide, thereby outperforming most reported aptasensors. The high selectivity, superior stability and reproducibility, and excellent regeneration performance of the constructed aptasensor indicated its remarkable potential application for 17ß-estradiol determination in diverse real samples. This aptasensing strategy can be used to analyze other targets by replacing the corresponding aptamer.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Estructuras Metalorgánicas , Porfirinas , Técnicas Biosensibles/métodos , Reproducibilidad de los Resultados , Estradiol , Tomografía Computarizada por Rayos X , Límite de Detección , Técnicas Electroquímicas/métodos
8.
Anal Chim Acta ; 1248: 340893, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36813455

RESUMEN

The sensitive determination of food-borne pathogens from food products is essential to ensure food safety and to protect people's health. Herein, a novel photoelectrochemical (PEC) aptasensor was manufactured based on defect-rich bimetallic cerium/indium oxide nanocrystals confined in mesoporous nitrogen-doped carbon (denoted as In2O3/CeO2@mNC) for sensitively detecting Escherichia coli (E. coli) from real samples. A new cerium-based polymer-metal-organic framework [polyMOF(Ce)] was synthesized using polyether polymer containing 1,4-benzenedicarboxylic acid unit (L8) as ligand, trimesic acid as co-ligand, and cerium ions as coordination centers. After adsorbing trace indium ions (In3+), the gained polyMOF(Ce)/In3+ complex was calcined at high temperature under nitrogen atmosphere, resulting in the production of a series of defect-rich In2O3/CeO2@mNC hybrids. Benefitting from the advantages of high specific surface area, large pore size, and multiple functionality of polyMOF(Ce), In2O3/CeO2@mNC hybrids showed enhanced visible light absorption ability, separation performance of the photo-generated electrons and holes, promoted electron transfer, as well as the strong bioaffinity toward E. coli-targeted aptamer. Accordingly, the constructed PEC aptasensor illustrated an ultralow detection limit of 1.12 CFU mL-1, remarkably lower than most of the reported E. coli biosensors, along with high stability and selectivity, excellent reproducibility, and expected regeneration ability. The present work provides insight into the construction of a general PEC biosensing strategy based on MOF-based derivatives for the sensitive analysis of food-borne pathogens.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Cerio , Estructuras Metalorgánicas , Nanopartículas , Humanos , Carbono/química , Escherichia coli , Nitrógeno/química , Reproducibilidad de los Resultados , Ligandos , Nanopartículas/química , Estructuras Metalorgánicas/química , Cerio/química , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Límite de Detección , Aptámeros de Nucleótidos/química
9.
Adv Sci (Weinh) ; 10(8): e2205786, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36683249

RESUMEN

A defect-rich 2D p-n heterojunction, Cox Ni3- x (HITP)2 /BNSs-P (HITP: 2,3,6,7,10,11-hexaiminotriphenylene), is constructed using a semiconductive metal-organic framework (MOF) and boron nanosheets (BNSs) by in situ solution plasma modification. The heterojunction is an effective catalyst for the electrocatalytic nitrogen reduction reaction (eNRR) under ambient conditions. Interface engineering and plasma-assisted defects on the p-n Cox Ni3-x (HITP)2 /BNSs-P heterojunction led to the formation of both Co-N3 and B…O dual-active sites. As a result, Cox Ni3-x (HITP)2 /BNSs-P has a high NH3 yield of 128.26 ± 2.27 µg h-1 mgcat. -1 and a Faradaic efficiency of 52.92 ± 1.83% in 0.1 m HCl solution. The catalytic mechanism for the eNRR is also studied by in situ FTIR spectra and DFT calculations. A Cox Ni3- x (HITP)2 /BNSs-P-based Zn-N2 battery achieved an unprecedented power output with a peak power density of 5.40 mW cm-2 and an energy density of 240 mA h gzn -1 in 0.1 m HCl. This study establishes an efficient strategy for the rational design, using defect and interfacial engineering, of advanced eNRR catalysts for ammonia synthesis under ambient conditions.

10.
J Colloid Interface Sci ; 631(Pt B): 101-113, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36399803

RESUMEN

To obtain excellent electrocatalysts for improving H2O2 yield and selectivity, we formulated a novel method for embedding cobalt catalytic active sites in porous two-dimensional nitrogen-doped carbon network (CNy) network and employed them as excellent two-electron oxygen reduction reaction (2e--ORR) electrocatalysts. The polymeric cobalt-based metal-organic framework (polyCo-MOF) and melamine-cyanuric acid-complex (MCA) hybrid (denoted as polyCo-MOF@MCA) was used as a precursor for preparing a series of electrocatalysts comprising multiple active sites such as metallic Co, CoOx, or Co-N, which are homogeneously embedded in the porous two-dimensional CNy network through pyrolysis at high temperatures (600 °C, 700 °C, and 800 °C) under N2 atmosphere. The obtained CoOx/Co@CNy,700 hybrid by pyrolyzing polyCo-MOF@MCA at 700 °C displayed remarkably high H2O2 production and large selectivity in an alkaline solution. The possible catalytic mechanism of CoOx/Co@CNy,700 toward 2e--ORR was identified by determining the catalytic kinetics and control experiments. The cathode assembled with the CoOx/Co@CNy,700 hybrid showed the maximum H2O2 production of 405 mmol L-1gcat.-1h-1 with a high Faradaic efficiency of 88.9 % at 0.65 V. The present work demonstrated a novel strategy for identifying excellent electrocatalysts with homogeneously dispersed multiple active sites and high production and selectivity for H2O2 synthesis, extending the applications of porous organic frameworks to the field of clean energy.

11.
Food Chem ; 403: 134370, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36174336

RESUMEN

An electrochemical impedimetric immunosensor was constructed based on a hierarchical nanostructured CoCo Prussian blue analogue entrapped by a Zr-based porphyrin MOF (denoted by CoCoPBA@PCN-221) for the sensitive detection of deoxynivalenol (DON). Given that CoCoPBA@PCN-221 demonstrated a hierarchical nanostructure, large specific surface area, and the synergistic effect between mixed metal valence states (Co2+/Co3+) and Zr clusters, it thus displayed a high binding interaction with the DON-targeted antibody. Compared with CoCoPBA and PCN-221, CoCoPBA@PCN-221 showed a superior stabilization ability toward the antibody-antigen complex in aqueous solution. Under optimum conditions, the CoCoPBA@PCN-221-based impedimetric immunosensor exhibited a good linear range from 1 fg mL-1 to 1 ng mL-1, and an ultralow detection limit of 0.14 fg mL-1, accompanied by high selectivity, reproducibility, stability, and applicability in foodstuffs. This method allows the integration of MOFs with cascading properties for applications in the biosensing and food safety fields.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Técnicas Biosensibles/métodos , Técnicas Electroquímicas/métodos , Inmunoensayo , Límite de Detección , Nanoestructuras/química , Reproducibilidad de los Resultados
12.
Mikrochim Acta ; 189(9): 338, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35980479

RESUMEN

A zirconium-cobalt metal-organic framework (ZrCo-MOF) was prepared and used as sensing material to fabricate an aptasensor for trace detection of carcinoembryonic antigen (CEA). The ZrCo-MOF integrates the 3D porous structure and abundant defects of the MOF framework, the catalytic activity and inherent redox behavior of Co, and high stability of Zr-MOF, providing abundant active sites to effectively anchor aptamers. As a result, the ZrCo-MOF-based aptasensor shows high sensitivity to detect CEA via specific recognition between aptamer and CEA, as well as the formation of aptamer-CEA complex. A detection limit of 0.35 fg·mL-1 was deduced from the electrochemical impedance spectroscopy within a wide linear range of 0.001-100 pg·mL-1 for CEA, which was substantially lower than those of most reported CEA biosensors. The ZrCo-MOF-based aptasensor also shows good selectivity, reproducibility, regenerability, stability, and applicability for human serum sample. Therefore, the developed ZrCo-MOF-based aptasensor will be promising for ultrasensitive detection of biomarkers and the early diagnosis of cancer. This work presents a novel electrochemical aptasensor for the trace detection of carcinoembryonic antigen (CEA) based on a zirconium-cobalt metal-organic framework (ZrCo-MOF), which shows low detection limit of 0.35 fg·mL-1, high selectivity as well as good reproducibility, regenerability, stability, and applicability. The result provides a promising approach to detect the cancer biomarkers in an early age.


Asunto(s)
Aptámeros de Nucleótidos , Estructuras Metalorgánicas , Aptámeros de Nucleótidos/química , Antígeno Carcinoembrionario , Cobalto , Humanos , Límite de Detección , Estructuras Metalorgánicas/química , Reproducibilidad de los Resultados , Circonio/química
13.
Mikrochim Acta ; 189(6): 229, 2022 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-35610519

RESUMEN

An impedimetric sensing strategy was developed for sensitively determining diethylstilbestrol (DES) based on a platform of porphyrin-containing covalent-organic framework (p-COF). The p-COF was synthesized using 5,10,15,20-tetra (4-aminophenyl) porphyrin (TAPP) and 1,3,6,8-tetrakis(4-formylphenyl) pyrene (TFPy) as building blocks via condensation reaction, for which p-COF was named as TAPP-TFPy-COF. Considering the large specific surface area (302.9 m2 g-1), high porosity, rich nitrogen functionality, superior electrochemical activity, and strong bioaffinity toward DNA strands, the TAPP-TFPy-COF-based platform exhibited enhanced, non-label, and amplified electrochemical signal, large number of immobilized DES-targeted aptamer strands, and fast-response toward the analyte. Electrochemical results reveal that the TAPP-TFPy-COF-based aptasensor promoted the sensing performance for the detection of DES, resulting in an extremely low limit of detection of 0.42 fg mL-1 within a DES concentration ranging from 1 fg mL-1 to 0.1 pg mL-1, which was substantially lower than those of most reported DES sensors. Furthermore, the TAPP-TFPy-COF-based aptasensor possessed outperformed stability, high selectivity, ascendant reproducibility, and acceptable applicability in diverse environments. The recovery values for DES detection in milk, tap water, and frozen shrimp were in the range 91.80-118.50% with low relative standard deviation of 0.11-4.26%. This work provides a new sensing electrochemical approach based on COF network for DES detection and shows a deep insight into the construction of COF-based biosensors, which can be extended to be used for other target compounds.


Asunto(s)
Aptámeros de Nucleótidos , Estructuras Metalorgánicas , Porfirinas , Aptámeros de Nucleótidos/química , Dietilestilbestrol , Límite de Detección , Estructuras Metalorgánicas/química , Porfirinas/química , Reproducibilidad de los Resultados
14.
Dalton Trans ; 51(5): 2094-2104, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35040456

RESUMEN

In this study, a novel porphyrin-based porous organic polymer (POP) was constructed using 5,10,15,20-tetramine (4-aminophenyl) porphyrin (TAPP) and 5,5'-diformyl-2,2'-bipyridine (DPDD) as organic ligands via a solvothermal method (represented as TAPP-DPDD-POP). Then, it was utilized as a bifunctional scaffold for constructing a sensitive sensing strategy toward the nucleocapsid phosphoprotein (N-gene) of SARS-CoV-2. The obtained TAPP-DPDD-POP is composed of nanospheres with a size of 100-300 nm and possesses a highly conjugated and π-π stacking network. The coexistence of the porphyrin and bipyridine moieties of TAPP-DPDD-POP afforded considerable electrochemical activity and a strong binding interaction toward the SARS-CoV-2 N-gene-targeted antibody and targeted the aptamer strands of the N-gene. The TAPP-DPDD-POP-based aptasensor and immunosensor were manufactured for the sensitive analysis of SARS-CoV-2 N-gene, and exhibited the limit of detection (LOD) of 0.59 fg mL-1 and 0.17 fg mL-1, respectively, within the range of 0.1 fg mL-1 to 1 ng mL-1 of N-gene. The sensing performances of both the TAPP-DPDD-POP-based aptasensor and immunosensor were better than those of existing electrochemical biosensors for analyzing the N-gene, accompanied with excellent stability, high selectivity and reproducibility. The TAPP-DPDD-POP-based aptasensor and immunosensor were then employed to detect the N-gene from various environments, including human serum, river water, and seafoods. This work provides a new method of using an electrochemically active POP to sensitively and selectively analyze SARS-CoV-2 in diverse environments.


Asunto(s)
Técnicas Biosensibles/métodos , COVID-19/diagnóstico , Proteínas de la Nucleocápside de Coronavirus/análisis , Técnicas Electroquímicas/métodos , Polímeros/química , Porfirinas/química , SARS-CoV-2/aislamiento & purificación , COVID-19/virología , Humanos , Límite de Detección , Fosfoproteínas/análisis , Reproducibilidad de los Resultados
15.
J Colloid Interface Sci ; 608(Pt 2): 1257-1267, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34739989

RESUMEN

In this study, a series of one-dimensional (1D)/two-dimensional (2D) heterostructure hybrids were fabricated through the in situ growth of a Co and Ni bimetallic zeolitic imidazolate framework (CoNi-ZIF) around N-doped carbon nanotubes (N-CNTs). The hybrids were further exploited as effective supercapacitor materials. The N-CNTs were prepared by carbonizing a mixture of glucose and the melamine-cyanuric acid complex at a high temperature (900 °C) under N2 atmosphere and applied as the template for the in situ synthesis of CoNi-ZIF nanosheets (NSs). The 1D N-CNTs in the hybrids can act as the high-way for charge transfer to boost the faradaic reactions. Changing the usage of metal precursors not only provided abundant redox reaction sites in 2D CoNi-ZIF NSs but also modulated the microstructures and chemical components of the hybrids. The integration of the features of N-CNTs and CoNi-ZIF NSs can result in a synergistic effect between N-CNTs and CoNi-ZIF NSs. Therefore, the obtained CoNi-ZIFs and N-CNTs hybrid (CoNi-ZIF@N-CNT) exhibited superior electrochemical capacitive performance. Comparison revealed that the CoNi-ZIF@N-CNT-2 hybrid, which was prepared with a 1:1 mass ratio of Co(NO3)2·6H2O and Ni(NO3)2·6H2O, displayed the largest specific capacitance of 1118F g-1 at 1 A g-1, which was higher than the capacitance of most reported metal-organic framework (MOF)-based supercapacitor electrodes. Moreover, the asymmetric supercapacitor based on the CoNi-ZIF@N-CNT-2 electrode exhibited a high energy density of 51.1 Wh kg-1 at the power density of 860.1 W kg-1 and good cycle stability. This work can provide a facile and effective way for the fabrication of heterostructured 1D/2D nanostructures based on 2D MOFs for advanced energy storage.


Asunto(s)
Caracol Conus , Nanoestructuras , Nanotubos de Carbono , Zeolitas , Animales , Electrodos
16.
J Colloid Interface Sci ; 608(Pt 2): 1627-1637, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34742079

RESUMEN

In this work, a two-dimensional heterostructure of molybdenum disulfide (MoS2) and nickelhydroxyloxide (NiOOH) nanosheets supported on catkin-derived mesoporous carbon (C-MC) was constructed and exploited as an efficient electrocatalyst for overall water splitting. The C-MC nanostructure was prepared by pyrolyzing biomass material of catkin at 600 °C in N2 atmosphere. The C-MC network exhibited hollow nanotube structure and had a large specific surface area, comprising trace nitrogen and a large amount of oxygen vacancies. It further served as the support for the growth of NiOOH nanosheets (NiOOH@C-MC), which was combined with MoS2 nanosheets by in situ growth, yielding a multicomponent electrocatalyst (MoS2@NiOOH@C-MC). By integrating the superior hydrogen evolution reaction (HER) performance of MoS2, oxygen evolution reaction (OER) performance of NiOOH, and the fast electron transfer capability of C-MC, the prepared MoS2@NiOOH@C-MC illustrated a low potential of - 250 mV for HER and 1.51 V for OER at the current density of 10 mV cm-2. Consequently, when applied as the working electrode for driving overall water splitting in a two-electrode system, the bifunctional MoS2@NiOOH@C-MC electrocatalyst displayed a low cell voltage of 1.62 V at the current density of 10 mA cm-2. The present work provides a new strategy that uses biomass material for developing bifunctional electrocatalyst for overall water splitting.


Asunto(s)
Carbono , Molibdeno , Disulfuros , Cono de Planta , Agua
17.
Mikrochim Acta ; 188(12): 432, 2021 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-34822036

RESUMEN

The synthesis of bimetallic cobalt/iron polyphthalocyanine (represented by polyCoFePc) network via a modified solid-phase synthesis method is described. It was exploited as a platform for anchoring enrofloxacin (ENR)-targeted aptamer strands, thus, fabricating a label-free impedimetric aptasensor for determination of ENR. The polyCoFePc exhibited a porous two-dimensional (2D) conjugated nanostructure and rich functional groups, and showed a superior binding interaction toward aptamer strands as compared to monometallic polyFePc and polyCoPc networks. This finding was attributed to structural defects and increased active binding sites, thereby giving a highly sensitive detection ability toward ENR. By using electrochemical impedance spectroscopy (EIS), the polyCoFePc-based electrochemical aptasensor exhibited an extremely low detection limit of 0.06 fg mL-1 within the ENR concentration from 0.1 fg mL-1 to 100 pg mL-1, along with high selectivity, good reproducibility, and remarkable stability. Interestingly, the constructed polyCoFePc-based aptasensor also demonstrated wide practicability in various environments. The recoveries of ENR spiked into river water, milk, and pork samples ranged within 91.2 - 107.2%, 90.5 - 109.6%, and 91.2 - 102.3%, respectively.

18.
Langmuir ; 37(45): 13479-13492, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34734735

RESUMEN

We developed a novel metal-organic framework (MOF)@covalent-organic framework (COF) hybrid with a hierarchical nanostructure and excellent photoactivity, which further acted as the bifunctional platform of a dual-mode photoelectrochemical (PEC) and electrochemical (EC) biosensor for detecting HIV-1 DNA via immobilizing the HIV-1 DNA probe. First, the presynthesized Cu-MOF nanoellipsoids were used as the template for the in situ growth of the COF network, which was synthesized using copper-phthalocyanine tetra-amine (CoPc-TA) and 2,9-bis[p-(formyl)phenyl]-1,10-phenanthroline as building blocks through the Schiff base condensation. In view of the large specific surface area, abundant reserved amino group, excellent electrochemical activity, and high photoactivity, the obtained Cu-MOF@CuPc-TA-COF heterostructure not only can serve as the sensitive platform for anchoring the HIV-1 DNA probe strands but also can be utilized as the signal transducers for PEC and EC biosensors. Thereby, the constructed biosensor shows the sensitive and selective analysis ability toward the HIV-1 target DNA via the complementary hybridization between probe and target DNA strands. The dual-mode PEC and EC measurements revealed that the Cu-MOF@CuPc-TA-COF-based biosensor displayed a wide linear detection range from 1 fM to 1 nM and an extremely low limit of detection (LOD) of 0.07 and 0.18 fM, respectively. In addition, the dual-mode PEC-EC biosensor also demonstrated remarkable selectivity, high stability, good reproducibility, and preferable regeneration ability, as well as acceptable applicability, for which the detected HIV-1 DNA in human serum showed good consistency with real concentrations. Thereby, the present work can open a new dual-mode PEC-EC platform for detecting HIV-1 DNA based on the porous-organic framework heterostructure.


Asunto(s)
Técnicas Biosensibles , VIH-1 , Estructuras Metalorgánicas , ADN , Técnicas Electroquímicas , VIH-1/genética , Humanos , Límite de Detección , Reproducibilidad de los Resultados
19.
Mikrochim Acta ; 188(10): 316, 2021 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-34476615

RESUMEN

A novel label-free surface plasmon resonance (SPR) aptasensor has been constructed for the detection of N-gene of SARS-CoV-2 by using thiol-modified niobium carbide MXene quantum dots (Nb2C-SH QDs) as the bioplatform for anchoring N-gene-targeted aptamer. In the presence of SARS-CoV-2 N-gene, the immobilized aptamer strands changed their conformation to specifically bind with N-gene. It thus increased the contact area or enlarged the distance between aptamer and the SPR chip, resulting in a change of the SPR signal irradiated by the laser (He-Ne) with the wavelength (λ) of 633 nm. Nb2C QDs were derived from Nb2C MXene nanosheets via a solvothermal method, followed by functionalization with octadecanethiol through a self-assembling method. Subsequently, the gold chip for SPR measurements was modified with Nb2C-SH QDs via covalent binding of the Au-S bond also by self-assembling interaction. Nb2C-SH QDs not only resulted in high bioaffinity toward aptamer but also enhanced the SPR response. Thus, the Nb2C-SH QD-based SPR aptasensor had low limit of detection (LOD) of 4.9 pg mL-1 toward N-gene within the concentration range 0.05 to 100 ng mL-1. The sensor also showed excellent selectivity in the presence of various respiratory viruses and proteins in human serum and high stability. Moreover, the Nb2C-SH QD-based SPR aptasensor displayed a vast practical application for the qualitative analysis of N-gene from different samples, including seawater, seafood, and human serum. Thus, this work can provide a deep insight into the construction of the aptasensor for detecting SARS-CoV-2 in complex environments. A novel label-free surface plasmon resonance aptasensor has been constructed to detect sensitively and selectively the N-gene of SARS-CoV-2 by using thiol-modified niobium carbide MXene quantum dots as the scaffold to anchor the N-gene-targeted aptamer.


Asunto(s)
Aptámeros de Nucleótidos , COVID-19/diagnóstico , Niobio/química , Nucleocápside/metabolismo , Puntos Cuánticos/química , SARS-CoV-2/aislamiento & purificación , Resonancia por Plasmón de Superficie/métodos , COVID-19/virología , Humanos , Límite de Detección
20.
Talanta ; 228: 122060, 2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773722

RESUMEN

A fluorescent aptasensor based on porphyrin-based covalent organic framework (p-COF) and carbon dots (CDs) was constructed for detecting vascular endothelial growth factor 165 (VEGF165) and for imaging of the breast cancer cell line Michigan cancer foundation-7 (MCF-7). CDs synthesized with strong photoluminescence at λ∼380 nm were used as donors to label the VEGF165-targeted aptamers (AptVEGF/CDs). Additionally, the p-COF nanostructure comprised rich functional groups of CN on the surface and π-stacking planar nanostructure, resulting in the CDs adsorption via weakly π-π stacking, hydrogen bond and the Van der Waals force. Thereby, the fluorescence resonance energy transfer (FRET) occurred due to the close distance between the p-COF network and CDs, leading to the quenching of the fluorescence feature of CDs and p-COF. In the presence of VEGF165, the G-quadruplex was formed via the specific binding between VEGF165 and aptamer. It impelled that the release of partial VEGF165-AptVEGF/CDs complex, affording the fluorescence recovery of the sensing system to some extent. Consequently, the proposed AptVEGF/CDs/p-COF fluorescence biosensor offered excellent analytical performances for the VEGF165 detection, displaying a detection limit of 20.9 fg mL-1 within a wide linear range of the VEGF165 concentration of 1.0 pg mL-1-100 ng mL-1. The developed fluorescence biosensor was also used to determine VEGF165-overexpressed in MCF-7 cancer cells. Thereby, the present work can greatly widen the application of COFs in the development of aptasensors and cancer diagnosis.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Estructuras Metalorgánicas , Porfirinas , Puntos Cuánticos , Transferencia Resonante de Energía de Fluorescencia , Humanos , Límite de Detección , Factor A de Crecimiento Endotelial Vascular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...